skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crooks, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 20, 2026
  2. Yang, Yuzhe (Ed.)
    In the face of the unprecedented COVID-19 pandemic, various government-led initiatives and individual actions (e.g., lockdowns, social distancing, and masking) have resulted in diverse pandemic experiences. This study aims to explore these varied experiences to inform more proactive responses for future public health crises. Employing a novel “big-thick” data approach, we analyze and compare key pandemic-related topics that have been disseminatedtothe public through newspapers with those collectedfromthe public via interviews. Specifically, we utilized 82,533 U.S. newspaper articles from January 2020 to December 2021 and supplemented this “big” dataset with “thick” data from interviews and focus groups for topic modeling. Identified key topics were contextualized, compared and visualized at different scales to reveal areas of convergence and divergence. We found seven key topics from the “big” newspaper dataset, providing a macro-level view that covers public health, policies and economics. Conversely, three divergent topics were derived from the “thick” interview data, offering a micro-level view that focuses more on individuals’ experiences, emotions and concerns. A notable finding is the public’s concern about the reliability of news information, suggesting the need for further investigation on the impacts of mass media in shaping the public’s perception and behavior. Overall, by exploring the convergence and divergence in identified topics, our study offers new insights into the complex impacts of the pandemic and enhances our understanding of key issues both disseminated to and resonating with the public, paving the way for further health communication and policy-making. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  3. Within the geo-simulation research domain, micro-simulation and agent-based modeling often require the creation of synthetic populations. Creating such data is a time-consuming task and often lacks social networks, which are crucial for studying human interactions (e.g., disease spread, disaster response) while at the same time impacting decision-making. We address these challenges by introducing a Python based method that uses the open data including that from 2020 U.S. Census data to generate a large-scale realistic geographically explicit synthetic population for America’s 50 states and Washington D.C. along with the stylized social networks (e.g., home, work and schools). The resulting synthetic population can be utilized within various geo-simulation approaches (e.g., agent-based modeling), exploring the emergence of complex phenomena through human interactions and further fostering the study of urban digital twins. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Human mobility data science using trajectories or check-ins of individuals has many applications. Recently, we have seen a plethora of research efforts that tackle these applications. However, research progress in this field is limited by a lack of large and representative datasets. The largest and most commonly used dataset of individual human trajectories captures fewer than 200 individuals, while datasets of individual human check-ins capture fewer than 100 check-ins per city per day. Thus, it is not clear if findings from the human mobility data science community would generalize to large populations. Since obtaining massive, representative, and individual-level human mobility data is hard to come by due to privacy considerations, the vision of this work is to embrace the use of data generated by large-scale socially realistic microsimulations. Informed by both real data and leveraging social and behavioral theories, massive spatially explicit microsimulations may allow us to simulate entire megacities at the person level. The simulated worlds, which do not capture any identifiable personal information, allow us to perform “in silico” experiments using the simulated world as a sandbox in which we have perfect information and perfect control without jeopardizing the privacy of any actual individual. In silico experiments have become commonplace in other scientific domains such as chemistry and biology, permitting experiments that foster the understanding of concepts without any harm to individuals. This work describes challenges and opportunities for leveraging massive and realistic simulated alternate worlds for in silico human mobility data science. 
    more » « less
  5. The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses. 
    more » « less
  6. Location-based social networks (LBSNs) have been studied extensively in recent years. However, utilizing real-world LBSN data sets yields several weaknesses: sparse and small data sets, privacy concerns, and a lack of authoritative ground-truth. To overcome these weaknesses, we leverage a large-scale LBSN simulation to create a framework to simulate human behavior and to create synthetic but realistic LBSN data based on human patterns of life. Such data not only captures the location of users over time but also their interactions via social networks. Patterns of life are simulated by giving agents (i.e., people) an array of “needs” that they aim to satisfy, e.g., agents go home when they are tired, to restaurants when they are hungry, to work to cover their financial needs, and to recreational sites to meet friends and satisfy their social needs. While existing real-world LBSN data sets are trivially small, the proposed framework provides a source for massive LBSN benchmark data that closely mimics the real-world. As such, it allows us to capture 100% of the (simulated) population without any data uncertainty, privacy-related concerns, or incompleteness. It allows researchers to see the (simulated) world through the lens of an omniscient entity having perfect data. Our framework is made available to the community. In addition, we provide a series of simulated benchmark LBSN data sets using different synthetic towns and real-world urban environments obtained from OpenStreetMap. The simulation software and data sets, which comprise gigabytes of spatio-temporal and temporal social network data, are made available to the research community. 
    more » « less
  7. Data generators have been heavily used in creating massive trajectory datasets to address common challenges of real-world datasets, including privacy, cost of data collection, and data quality. However, such generators often overlook social and physiological characteristics of individuals and as such their results are often limited to simple movement patterns. To address these shortcomings, we propose an agent-based simulation framework that facilitates the development of behavioral models in which agents correspond to individuals that act based on personal preferences, goals, and needs within a realistic geographical environment. Researchers can use a drag-and-drop interface to design and control their own world including the geospatial and social (i.e. geo-social) properties. The framework is capable of generating and streaming very large data that captures the basic patterns of life in urban areas. Streaming data from the simulation can be accessed in real time through a dedicated API. 
    more » « less
  8. Location-based social networks (LBSNs) have been studied extensively in recent years. However, utilizing real-world LBSN datasets in such studies has severe weaknesses: sparse and small datasets, privacy concerns, and a lack of authoritative ground-truth. Our vision is to create a large scale geo-simulation framework to simulate human behavior and to create synthetic but realistic LBSN data that captures the location of users over time as well as social interactions of users in a social network. While existing LBSN datasets are trivially small, such a framework would provide the first source of massive LBSN benchmark data which would closely mimic the real world, containing high-fidelity information of location, and social connections of millions of simulated agents over several years of simulated time. Therefore, it would serve the research community by revitalizing and reshaping research on LBSNs by allowing researchers to see the (simulated) world through the lens of an omniscient entity having perfect data. These evaluations will guide future research enabling us to develop solutions to improve LBSN applications such as user-location recommendation, friend recommendation, location prediction, and location privacy. 
    more » « less
  9. This paper describes Distributed MASON, a distributed version of the MASON agent-based simulation tool. Distributed MASON is architected to take advantage of well known principles from Parallel and Discrete Event Simulation, such as the use of Logical Processes (LP) as a method for obtaining scalable and high performing simulation systems. We first explain data management and sharing between LPs and describe our approach to load balancing. We then present both a local greedy approach and a global hierarchical approach. Finally, we present the results of our implementation of Distributed MASON on an instance in the Amazon Cloud, using several standard multi-agent models. The results indicate that our design is highly scalable and achieves our expected levels of speed-up. 
    more » « less